skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Yong‐Fang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The superoxide dismutases (SODs) play vital roles in controlling cellular reactive oxygen species (ROS) that are generated both under optimal as well as stress conditions in plants. The rice genome harbors seven SOD genes (CSD1, CSD2, CSD3, CSD4, FSD1, FSD2, and MSD) that encode seven constitutive transcripts. Of these, five (CSD2, CSD3, CSD4, FSD1, and MSD) utilizes an alternative splicing (AS) strategy and generate seven additional splice variants (SVs) or mRNA variants, i.e., three for CSD3, and one each for CSD2, CSD4, FSD1, and MSD. The exon-intron organization of these SVs revealed variations in the number and length of exons and/or untranslated regions (UTRs). We determined the expression patterns of SVs along with their constitutive forms of SODs in rice seedlings exposed to salt, osmotic, cold, heavy metal (Cu+2) stresses, as well as copper-deprivation. The results revealed that all seven SVs were transcriptionally active in both roots and shoots. When compared to their corresponding constitutive transcripts, the profiles of five SVs were almost similar, while two specific SVs (CSD3-SV4 and MSD-SV2) differed significantly, and the differences were also apparent between shoots and roots suggesting that the specific SVs are likely to play important roles in a tissue-specific and stress-specific manner. Overall, the present study has provided a comprehensive analysis of the SVs of SODs and their responses to stress conditions in shoots and roots of rice seedlings. 
    more » « less
  2. SUMMARY Plants respond to low temperatures by altering the mRNA abundance of thousands of genes contributing to numerous physiological and metabolic processes that allow them to adapt. At the post‐transcriptional level, these cold stress‐responsive transcripts undergo alternative splicing, microRNA‐mediated regulation and alternative polyadenylation, amongst others. Recently, m6A, m5C and other mRNA modifications that can affect the regulation and stability of RNA were discovered, thus revealing another layer of post‐transcriptional regulation that plays an important role in modulating gene expression. The importance of m6A in plant growth and development has been appreciated, although its significance under stress conditions is still underexplored. To assess the role of m6A modifications during cold stress responses, methylated RNA immunoprecipitation sequencing was performed in Arabidopsis seedlings esposed to low temperature stress (4°C) for 24 h. This transcriptome‐wide m6A analysis revealed large‐scale shifts in this modification in response to low temperature stress. Because m6A is known to affect transcript stability/degradation and translation, we investigated these possibilities. Interestingly, we found that cold‐enriched m6A‐containing transcripts demonstrated the largest increases in transcript abundance coupled with increased ribosome occupancy under cold stress. The significance of the m6A epitranscriptome on plant cold tolerance was further assessed using themtamutant in which the major m6A methyltransferase gene was mutated. Compared to the wild‐type, along with the differences inCBFsandCORgene expression levels, themtamutant exhibited hypersensitivity to cold treatment as determined by primary root growth, biomass, and reactive oxygen species accumulation. Furthermore, and most importantly, both non‐acclimated and cold‐acclimatedmtamutant demonstrated hypersensitivity to freezing tolerance. Taken together, these findings suggest a critical role for the epitranscriptome in cold tolerance of Arabidopsis. 
    more » « less